Решаем уравнения с дробями
Приветствуем вас уважаемые школьники. предлагаем Вам ознакомиться с обучающим видео уроком решаем уравнения с дробями. Андрей Андреевич Андреев решит задачи по Алгебре, а Вы на его примере сможете попробовать решить уже свои задачи которые задали Вам.
Решение дробных рациональных уравнений
Целое выражение – это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое-либо число, отличное от нуля.
Понятие дробного рационального выражения
Дробное выражение – это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит также деление на выражения с буквенными переменными.
Рациональные выражения – это все целые и дробные выражения. Рациональные уравнения – это уравнения, у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая и правая части будут являться целыми выражениями, то такое рациональное уравнение называется целым.
Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.
Примеры дробных рациональных выражений
1. x-3/x = -6*x+19
2. (x-4)/(2*x+5) = (x+7)/(x-2)
3. (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5))
Схема решения дробного рационального уравнения
1. Найти общий знаменатель всех дробей, которые входят в уравнение.
2. Умножить обе части уравнения на общий знаменатель.
3. Решить полученное целое уравнение.
4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.
Так как мы решаем дробные рациональные уравнения, то в знаменателях дробей будут переменные. Значит, будут они и в общем знаменателе. А во втором пункте алгоритма мы умножаем на общий знаменатель, то могут появится посторонние корни.
При которых общий знаменатель будет равен нулю, а значит и умножение на него будет бессмысленным. Поэтому в конце обязательно делать проверку полученных корней. А теперь смотрим обучающий видео урок с Андреем Андреевич “Решаем уравнения с дробями”.